

Expanded Exclusive Terminology for AIGP Study Guide

This expanded glossary provides an extensive set of exclusive terms tailored for the *AIGP Study Guide*. It builds on the original by adding more terms per domain, ensuring comprehensive coverage of the book's table of contents (TOC). Each term includes:

- Definition: A precise, detailed explanation.
- Context: How the term relates to specific chapters or domains in the TOC.
- Key Considerations: Practical implications, examples, or related concepts for deeper understanding.
- Relevance to AIGP Exam: Why this term is important for certification preparation.

Terms are organized by domain for easy navigation, with numbering continued from the original for continuity. This version aims for maximum coverage, drawing from all chapters in the TOC to support mastery of AI governance.

Domain I — Foundations of AI Governance

1. AI Taxonomy

- Definition: A structured classification system for AI technologies, categorizing them by capabilities (e.g., narrow vs. general AI), autonomy levels (e.g., assisted vs. autonomous), and application domains (e.g., predictive vs. generative), enabling systematic risk evaluation and governance.
- Context: Fundamental in Chapter 1 for distinguishing AI from traditional software and identifying harms.
- Key Considerations: Includes sub-categories like machine learning subsets (supervised, unsupervised); example: Classifying a chatbot as narrow, generative AI to assess conversational risks. Related to OECD frameworks.
- Relevance to AIGP Exam: Essential for questions on AI capabilities and risk categorization.

2. Governance Operating Model (GOM)

- Definition: An organizational framework that outlines the structure, processes, and accountability mechanisms for managing AI initiatives, including program charters, decision hierarchies, and escalation paths.
- Context: Detailed in Chapter 2 for building roles, responsibilities, and committees.
- Key Considerations: Incorporates RACI (Responsible, Accountable, Consulted, Informed) matrices; example: A GOM with a central AI ethics board overseeing project approvals. Must adapt to organizational size and maturity.
- Relevance to AIGP Exam: Tested in scenarios involving AI program setup and ownership.

3. Risk Trade-Off Matrix

- Definition: A decision-support tool that quantifies and visualizes the balance between AI's potential benefits (e.g., efficiency gains) and risks (e.g., bias amplification), often using scoring systems for prioritization.
- Context: Applied in Chapter 1 to evaluate value creation against harms.
- Key Considerations: Factors include probability-impact grids; example: Trading off faster loan approvals (value) with fairness risks in credit AI. Integrates with responsible AI principles like accountability.
- Relevance to AIGP Exam: Key for risk management and ethical decision-making questions.

4. Policy Stack

- Definition: A hierarchical set of interconnected policies, standards, guidelines, and procedures that govern AI activities, ensuring alignment from high-level strategy to operational controls.
- Context: Architected in Chapter 3, covering lifecycle stages and documentation.
- Key Considerations: Includes version control via tools like Git; example: A stack with top-level AI ethics policy cascading to data handling procedures. Handles exceptions through waivers.
- Relevance to AIGP Exam: Critical for understanding control objectives and compliance workflows.

5. Data Provenance

- Definition: The comprehensive record of a dataset's origin, modifications, ownership, and chain of custody, facilitating traceability and auditability in AI systems.
- Context: Emphasized in Chapter 4 for data governance, lineage, and quality.
- Key Considerations: Uses metadata standards like PROV-O; example: Tracking image data from source to model training to detect biases. Links to fairness and retention policies.
- Relevance to AIGP Exam: Appears in data rights and traceability scenarios.

6. Fairness Threshold

- Definition: A quantifiable benchmark (e.g., demographic parity ratio > 0.8) set to measure and enforce equitable outcomes in AI models, preventing disparate impact on protected groups.
- Context: Utilized in Chapter 5 for bias analysis and validation.
- Key Considerations: Metrics include equalized odds; example: Setting a threshold for hiring AI to ensure gender balance in recommendations. Involves red-team testing.
- Relevance to AIGP Exam: Vital for fairness and non-discrimination assessments.

7. AI Harms Spectrum

- Definition: A continuum of potential negative impacts from AI, ranging from individual harms (e.g., privacy invasion) to societal ones (e.g., misinformation amplification), categorized by severity and likelihood.
- Context: Explored in Chapter 1 alongside risk categories and impact levels.
- Key Considerations: Includes allocative vs. representational harms; example: Facial recognition causing wrongful arrests (high-severity harm). Mitigated via impact assessments.
- Relevance to AIGP Exam: Core to identifying and prioritizing governance risks.

8. Responsible AI Principles

- Definition: A set of ethical guidelines (e.g., fairness, transparency, accountability) that guide the design, development, and use of AI to minimize harms and maximize societal benefits.
- Context: Practiced in Chapter 1, integrated into GOM in Chapter 2.
- Key Considerations: Draws from frameworks like OECD; example: Implementing transparency through explainable models. Enforced via training programs.
- Relevance to AIGP Exam: Foundation for ethical governance questions.

9. Control Objectives

- Definition: Specific, measurable goals for AI controls at each lifecycle stage, ensuring risks are addressed through preventive, detective, or corrective measures.
- Context: Defined in Chapter 3 for policies across intake to retirement.
- Key Considerations: Aligned with standards like NIST; example: Objective for data quality gates to verify accuracy >95%. Includes third-party controls.
- Relevance to AIGP Exam: Tested in lifecycle governance and auditing.

10. Data Quality Gates

- Definition: Checkpoints in the data pipeline where quality attributes (e.g., completeness, accuracy, timeliness) are evaluated against predefined criteria before proceeding.
- Context: Implemented in Chapter 4 for lineage and sensitive attributes.
- Key Considerations: Uses tools like Great Expectations; example: Gate rejecting datasets with >10% missing values. Links to minimization and deletion.
- Relevance to AIGP Exam: Important for data governance compliance.

11. Bias Detection Metrics

- Definition: Statistical measures (e.g., disparate impact ratio, equal opportunity difference) used to quantify and identify biases in AI outputs across demographic groups.

- Context: Applied in Chapter 5 for fairness and disparate impact analysis.
- Key Considerations: Thresholds vary by context; example: Measuring loan approval rates by race. Complemented by explainability checks.
- Relevance to AIGP Exam: Key in validation and equity-focused questions.

12. Red-Team Exercises

- Definition: Simulated adversarial attacks on AI systems to uncover vulnerabilities in security, safety, and robustness, involving ethical hackers or cross-functional teams.
- Context: Conducted in Chapter 5 for testing and evaluation.
- Key Considerations: Includes prompt injection tests; example: Testing chatbot for harmful responses. Results inform mitigation plans.
- Relevance to AIGP Exam: Essential for security and resilience assessments.

13. Evidence Artifacts

- Definition: Documented proofs (e.g., logs, reports, audits) collected throughout the AI lifecycle to demonstrate compliance with governance policies and standards.
- Context: Reused across Chapters 1-5 for documentation requirements.
- Key Considerations: Stored in repositories; example: Model training logs as evidence for reproducibility. Supports waivers and audits.
- Relevance to AIGP Exam: Critical for traceability and certification evidence.

14. Competency Framework

- Definition: A structured outline of skills, knowledge, and behaviors required for AI roles, guiding training and awareness programs.
- Context: Developed in Chapter 2 for training and competency.
- Key Considerations: Levels from basic to expert; example: Requiring ethics training for developers. Aligned with RACI.
- Relevance to AIGP Exam: Appears in organizational readiness questions.

15. Lifecycle Harms

- Definition: Risks and negative impacts that can occur at any stage of the AI lifecycle, from design (e.g., biased data selection) to deployment (e.g., real-world failures).
- Context: Addressed holistically in Chapter 1 and policies in Chapter 3.
- Key Considerations: Mapped to stages; example: Deployment harm from unmonitored drift. Prevented via controls.
- Relevance to AIGP Exam: Integral to end-to-end governance.

16. Sensitive Attributes

- Definition: Data features (e.g., race, gender, age) that, if mishandled, could lead to discrimination or privacy breaches in AI models.
- Context: Considered in Chapter 4 for fairness and data rights.
- Key Considerations: Protected under laws; example: Anonymizing attributes in datasets. Links to minimization.
- Relevance to AIGP Exam: Key in privacy and fairness exams.

17. Explainability Checks

- Definition: Evaluations to ensure AI decisions can be interpreted and justified, using techniques like feature importance or counterfactuals.
- Context: Performed in Chapter 5 for transparency.
- Key Considerations: Tools like SHAP; example: Explaining credit denial reasons. Balances with performance.
- Relevance to AIGP Exam: Vital for accountability questions.

18. Procurement Controls

- Definition: Policies governing the acquisition of third-party AI components, including due diligence on vendors and open-source licenses.
- Context: Outlined in Chapter 3 for third-party controls.
- Key Considerations: Risk assessments; example: Vetting APIs for compliance. Includes waivers.
- Relevance to AIGP Exam: Tested in supply chain governance.

19. Retention Policy

- Definition: Rules specifying how long AI-related data and models are kept, based on legal, business, and risk factors, with mechanisms for secure deletion.
- Context: Defined in Chapter 4 for minimization and deletion.
- Key Considerations: Complies with GDPR; example: Deleting training data after 5 years. Automates via tools.
- Relevance to AIGP Exam: Important for data protection compliance.

20. Robustness Evaluation

- Definition: Testing AI systems against perturbations, adversarial inputs, or environmental changes to ensure reliable performance.
- Context: Conducted in Chapter 5 alongside performance metrics.
- Key Considerations: Metrics like accuracy under noise; example: Image recognition in varying lighting. Includes safety exercises.
- Relevance to AIGP Exam: Core to system reliability questions.

Domain II — Laws, Standards & Frameworks

21. Lawful Basis

- Definition: The legal ground (e.g., consent, legitimate interest) required for processing personal data in AI, ensuring compliance with privacy laws and minimizing unauthorized use.
- Context: Core principle in Chapter 6 for privacy and data protection.
- Key Considerations: Assessed via DPIAs; example: Using consent for marketing AI. Links to purpose limits.
- Relevance to AIGP Exam: Fundamental in legal foundations questions.

22. DPIA (Data Protection Impact Assessment)

- Definition: A formal risk assessment process identifying privacy impacts of AI processing, recommending mitigations for high-risk activities.
- Context: Mandatory in Chapter 6 for AI impact assessments.
- Key Considerations: Involves stakeholders; example: DPIA for biometric AI revealing high surveillance risks. Required under GDPR.
- Relevance to AIGP Exam: Key for compliance and risk treatment.

23. Unified Control Mapping

- Definition: A cross-framework alignment tool that maps controls from multiple standards (e.g., NIST to ISO) to create a cohesive AI governance system.
- Context: Used in Chapter 8 for OECD, NIST, ISO integration.
- Key Considerations: Reduces redundancy; example: Mapping NIST's "Govern" to ISO PDCA. Supports audits.
- Relevance to AIGP Exam: Essential for framework operationalization.

24. Risk Tier

- Definition: A regulatory classification in frameworks like EU AI Act, assigning AI systems to levels (prohibited, high-risk) based on potential harm.
- Context: Essentials in Chapter 9 for tiers and conformity.
- Key Considerations: Determines obligations; example: Biometric ID as high-risk. Influences QMS.
- Relevance to AIGP Exam: Central to EU AI Act questions.

25. Conformity Assessment

- Definition: An independent verification process confirming AI systems meet regulatory standards, involving documentation and testing.

- Context: Required in Chapter 9 for high-risk AI.
- Key Considerations: Third-party or self-assessment; example: Certifying medical AI. Includes technical docs.
- Relevance to AIGP Exam: Tested in enforcement scenarios.

26. UDAP/UDAAP Compliance

- Definition: Adherence to laws preventing Unfair, Deceptive, or Abusive Acts/Practices in AI consumer interactions, protecting against misleading outputs.
- Context: Covered in Chapter 7 for consumer protection.
- Key Considerations: FTC guidelines; example: Ensuring chatbots don't deceive users. Links to liability.
- Relevance to AIGP Exam: Important for non-discrimination and liability.

27. Purpose Limitation

- Definition: The principle restricting data use to specified, explicit purposes, preventing repurposing without justification in AI systems.
- Context: Part of core principles in Chapter 6.
- Key Considerations: Enforced via contracts; example: Limiting health data to diagnostics only. Ties to minimization.
- Relevance to AIGP Exam: Key in privacy law questions.

28. Controller/Processor Roles

- Definition: Distinction in data protection laws where controllers determine processing purposes, and processors act on instructions, applying to AI data sharing.
- Context: Defined in Chapter 6 for roles and sharing.
- Key Considerations: Contracts required; example: Cloud provider as processor for AI training. Impacts liability.
- Relevance to AIGP Exam: Essential for data governance structures.

29. Cross-Border Transfers

- Definition: Mechanisms (e.g., adequacy decisions, SCCs) for legally transferring personal data outside jurisdictions, ensuring equivalent protection in AI global ops.
- Context: Addressed in Chapter 6 for localization and transfers.
- Key Considerations: Schrems II implications; example: Using SCCs for EU-US AI data flow. Includes incident notification.
- Relevance to AIGP Exam: Critical for international compliance.

30. Incident Notification

- Definition: The requirement to report data breaches or AI failures to authorities and affected parties within specified timelines.
- Context: Part of recordkeeping in Chapter 6.
- Key Considerations: 72-hour GDPR rule; example: Notifying bias incidents in hiring AI. Logs for audits.
- Relevance to AIGP Exam: Tested in response and reporting scenarios.

31. IP Licensing

- Definition: Agreements governing the use of intellectual property in AI, including training data copyrights and model terms.
- Context: Explored in Chapter 7 for IP and licensing.
- Key Considerations: Fair use debates; example: Licensing datasets for commercial AI. Avoids infringement.
- Relevance to AIGP Exam: Key in legal foundations for development.

32. Anti-Discrimination Obligations

- Definition: Sector-specific laws (e.g., ECOA in finance) requiring AI to avoid biased outcomes against protected classes.
- Context: Obligations by sector in Chapter 7.
- Key Considerations: Audits for compliance; example: Ensuring equal credit opportunities. Links to product liability.
- Relevance to AIGP Exam: Vital for equity and sector-specific questions.

33. Product Liability Theories

- Definition: Legal doctrines (e.g., strict liability, negligence) holding AI developers accountable for defective systems causing harm.
- Context: Theories in Chapter 7 for safety and defects.
- Key Considerations: Black-box challenges; example: Liability for autonomous vehicle accidents. Mitigated via testing.
- Relevance to AIGP Exam: Important for risk and accountability.

34. OECD AI Principles

- Definition: International guidelines promoting trustworthy AI through values like inclusivity, robustness, and transparency.
- Context: Operationalized in Chapter 8.
- Key Considerations: 5 principles; example: Ensuring human-centered AI. Influences national policies.
- Relevance to AIGP Exam: Foundation for global standards.

35. NIST AI RMF Functions

- Definition: Core activities (Govern, Map, Measure, Manage) in NIST's Risk Management Framework for holistic AI risk handling.
- Context: Functions in Chapter 8.
- Key Considerations: Iterative process; example: Mapping risks in development. Integrates with ISO.
- Relevance to AIGP Exam: Key framework questions.

36. ISO/IEC 42001 AIMS

- Definition: AI Management System standard using PDCA (Plan-Do-Check-Act) for continual improvement in AI governance.
- Context: Structure in Chapter 8.
- Key Considerations: Certifiable; example: PDCA for policy updates. Covers terminology from 22989.
- Relevance to AIGP Exam: Essential for management systems.

37. GPAI (General-Purpose AI)

- Definition: Versatile AI models (e.g., foundation models) adaptable to multiple tasks, subject to specific regulations under EU AI Act.
- Context: For foundational models in Chapter 9.
- Key Considerations: Transparency requirements; example: GPT-like models needing oversight.
- Relevance to AIGP Exam: Modern AI regulation focus.

38. Human Oversight

- Definition: Mechanisms ensuring human intervention in high-risk AI decisions to prevent errors or harms.
- Context: Enforcement in Chapter 9.
- Key Considerations: Levels of oversight; example: Human review in automated hiring.
- Relevance to AIGP Exam: Critical for safety and ethics.

39. Prohibited Practices

- Definition: AI uses banned under regulations (e.g., social scoring) due to unacceptable risks to rights.
- Context: Tiers in Chapter 9.
- Key Considerations: EU AI Act list; example: Real-time remote biometrics in public.
- Relevance to AIGP Exam: Key compliance boundaries.

40. Quality Management System (QMS)

- Definition: A formalized system for ensuring AI quality through processes, documentation, and audits.
- Context: Systems in Chapter 9.
- Key Considerations: ISO-aligned; example: QMS for high-risk AI conformity.
- Relevance to AIGP Exam: Tested in assessment processes.

Domain III — Governing AI Development

41. Use-Case Triage

- Definition: An initial screening process to prioritize AI projects based on feasibility, risks, and alignment with organizational goals.
- Context: Criteria in Chapter 10 for intake and assessment.
- Key Considerations: Scoring rubrics; example: Triaging chatbots as medium-risk. Involves stakeholders.
- Relevance to AIGP Exam: Important for project gating.

42. Feature Versioning

- Definition: Systematic tracking of changes to model features, ensuring version control for reproducibility and debugging.
- Context: Management in Chapter 11 for design.
- Key Considerations: Tools like DVC; example: Version 1.2 with added features. Links to checkpoints.
- Relevance to AIGP Exam: Key in traceability questions.

43. Drift Detection

- Definition: Automated monitoring to identify concept or data drift that affects model accuracy over time.
- Context: Baselines in Chapter 12 for training.
- Key Considerations: Statistical tests; example: Detecting seasonal changes in sales AI. Triggers retraining.
- Relevance to AIGP Exam: Essential for maintenance.

44. Bias Baseline

- Definition: An established reference point for acceptable bias levels, used as a benchmark in ongoing evaluations.
- Context: Thresholds in Chapter 12.
- Key Considerations: Context-specific; example: Baseline of 0.9 parity in facial AI.
- Relevance to AIGP Exam: Fairness testing focus.

45. Reproducibility Checkpoint

- Definition: Designated points where AI development states are snapshotted for exact replication of results.
- Context: Checkpoints in Chapter 11.
- Key Considerations: Includes seeds; example: Checkpoint before training.
- Relevance to AIGP Exam: Audit and review essential.

46. Impact Scoring

- Definition: A methodology to assign scores to AI impacts based on factors like scale, irreversibility, and affected populations.
- Context: Scoring in Chapter 10.
- Key Considerations: Qualitative/quantitative; example: High score for healthcare AI errors.
- Relevance to AIGP Exam: Risk prioritization.

47. Stakeholder Analysis

- Definition: Identification and evaluation of parties affected by AI, including their needs and potential harms.
- Context: Analysis in Chapter 10.
- Key Considerations: Matrices; example: Users, regulators in autonomous driving.
- Relevance to AIGP Exam: Inclusive governance.

48. Mitigation Planning

- Definition: Development of strategies to reduce identified AI risks, including controls and contingencies.
- Context: Planning in Chapter 10.
- Key Considerations: RBS (Risk Breakdown Structure); example: Debiasing techniques.
- Relevance to AIGP Exam: Treatment workflows.

49. Architecture Choices

- Definition: Decisions on AI system design elements like neural networks, hybrids, ensuring alignment with requirements.
- Context: Choices in Chapter 11.
- Key Considerations: Trade-offs; example: CNN for images.
- Relevance to AIGP Exam: Design governance.

50. Training Environments

- Definition: Isolated setups for model training, with controlled resources and security.

- Context: Plans in Chapter 12.
- Key Considerations: Cloud vs. on-prem; example: GPU clusters.
- Relevance to AIGP Exam: Development best practices.

51. Holdout Sets

- Definition: Reserved data portions for final model evaluation, preventing overfitting.
- Context: Strategy in Chapter 12.
- Key Considerations: 20% typical; example: Unseen test data.
- Relevance to AIGP Exam: Validation integrity.

52. Performance Thresholds

- Definition: Minimum acceptable metrics (e.g., 95% accuracy) for model release.
- Context: Thresholds in Chapter 12.
- Key Considerations: Domain-specific; example: Precision in fraud detection.
- Relevance to AIGP Exam: Readiness criteria.

53. Evidence Packages

- Definition: Compiled documents proving model readiness, including tests and reviews.
- Context: Packages in Chapter 12.
- Key Considerations: Standardized formats; example: Bias reports.
- Relevance to AIGP Exam: Release governance.

54. Success Criteria

- Definition: Defined benchmarks for AI project outcomes, tied to business objectives.
- Context: Criteria in Chapter 11.
- Key Considerations: SMART goals; example: ROI >20%.
- Relevance to AIGP Exam: Requirements alignment.

55. Data Selection

- Definition: Curated process for choosing representative, high-quality data for training.
- Context: Selection in Chapter 11.
- Key Considerations: Diversity checks; example: Balanced classes.
- Relevance to AIGP Exam: Foundation for fairness.

56. Design Reviews

- Definition: Formal evaluations of AI designs by peers or experts for compliance and quality.
- Context: Reviews in Chapter 11.
- Key Considerations: Checklists; example: Ethical sign-offs.

- Relevance to AIGP Exam: Gating mechanisms.

57. Approval Workflows

- Definition: Sequential processes for obtaining sign-offs at AI development milestones.
- Context: Workflows in Chapter 10.
- Key Considerations: Automated tools; example: Escalation to committee.
- Relevance to AIGP Exam: Decision rights.

58. Risk Identification

- Definition: Systematic discovery of potential AI threats using tools like brainstorming or checklists.
- Context: Identification in Chapter 10.
- Key Considerations: FMEA; example: Privacy risks in data.
- Relevance to AIGP Exam: Early governance.

59. Control Selection

- Definition: Choosing appropriate mitigations from a catalog based on risk profiles.
- Context: Selection in Chapter 10.
- Key Considerations: Cost-benefit; example: Encryption for security.
- Relevance to AIGP Exam: Treatment strategies.

60. Context Analysis

- Definition: Examination of environmental factors influencing AI use, like cultural or regulatory contexts.
- Context: Analysis in Chapter 10.
- Key Considerations: PESTLE; example: Cultural biases in global AI.
- Relevance to AIGP Exam: Holistic assessment.

Domain IV — Governing AI Deployment & Use

61. Model Card

- Definition: A transparency document detailing an AI model's intended use, performance metrics, ethical considerations, and limitations.
- Context: Checklists in Chapter 13 for release.
- Key Considerations: Standardized by Google; example: Card for sentiment AI noting biases.
- Relevance to AIGP Exam: Transparency tools.

62. Guardrail Governance

- Definition: Implementation of boundaries (e.g., content filters) to prevent AI from generating harmful or off-policy outputs.
- Context: Controls in Chapter 14 for use.
- Key Considerations: Dynamic updates; example: Blocking hate speech in chatbots.
- Relevance to AIGP Exam: Safe deployment.

63. Prompt Governance

- Definition: Policies for designing, reviewing, and monitoring inputs to generative AI to ensure safe, ethical responses.
- Context: Governance in Chapter 14 for RAG.
- Key Considerations: Best practices; example: Pre-approved prompts.
- Relevance to AIGP Exam: Emerging AI controls.

64. KPI/KRI Dashboard

- Definition: Interactive visualization tools tracking performance (KPIs) and risk (KRIs) indicators for AI systems.
- Context: Dashboards in Chapter 15 for monitoring.
- Key Considerations: Real-time; example: Alerting on accuracy drops.
- Relevance to AIGP Exam: Continuous improvement.

65. CAPA (Corrective and Preventive Action)

- Definition: A quality management process to investigate issues, implement fixes, and prevent recurrences in AI operations.
- Context: Management in Chapter 15.
- Key Considerations: Root cause analysis; example: Fixing bias post-incident.
- Relevance to AIGP Exam: Issue resolution.

66. Kill-Switch Protocol

- Definition: Emergency procedures to disable AI systems instantly in response to detected threats or failures.
- Context: Termination in Chapter 14.
- Key Considerations: Automated triggers; example: Shutting down rogue trading AI.
- Relevance to AIGP Exam: Safety mechanisms.

67. Vendor Risk Profile

- Definition: A detailed evaluation of third-party AI providers' risks, including compliance, security, and reliability.

- Context: Diligence in Chapter 14.
- Key Considerations: Scoring systems; example: Profiling API vendors.
- Relevance to AIGP Exam: Supply chain risks.

68. Deployment Patterns

- Definition: Strategies for rolling out AI (e.g., canary, blue-green) to minimize disruption and enable rollback.
- Context: Patterns in Chapter 13.
- Key Considerations: Risk-based; example: Phased rollout for recommendation AI.
- Relevance to AIGP Exam: Release management.

69. Monitoring Metrics

- Definition: Quantifiable measures (e.g., latency, error rates) tracked post-deployment to assess AI health.
- Context: Metrics in Chapter 13.
- Key Considerations: SLAs; example: 99.9% uptime.
- Relevance to AIGP Exam: Operational governance.

70. Change Management

- Definition: Processes for handling updates to deployed AI, including impact assessments and approvals.
- Context: Management in Chapter 13.
- Key Considerations: Versioning; example: Retraining triggers.
- Relevance to AIGP Exam: Maintenance cycles.

71. Audit Trails

- Definition: Chronological records of AI system actions and decisions for accountability and reviews.
- Context: Trails in Chapter 13.
- Key Considerations: Immutable logs; example: Decision logs in lending AI.
- Relevance to AIGP Exam: Compliance evidence.

72. Open-Source Compliance

- Definition: Adherence to licenses (e.g., GPL) when using or distributing open-source AI components.
- Context: Compliance in Chapter 14.
- Key Considerations: Scans; example: Avoiding copyleft issues.
- Relevance to AIGP Exam: Third-party governance.

73. User Instructions

- Definition: Guidelines provided to end-users on safe and effective AI interaction, including limitations.
- Context: Instructions in Chapter 14.
- Key Considerations: Clear language; example: Warnings on AI hallucinations.
- Relevance to AIGP Exam: Use governance.

74. Access Controls

- Definition: Mechanisms (e.g., RBAC) restricting AI access based on roles and needs.
- Context: Controls in Chapter 14.
- Key Considerations: Least privilege; example: Developer vs. user access.
- Relevance to AIGP Exam: Security in deployment.

75. Decommissioning

- Definition: Safe retirement of AI systems, including data deletion and knowledge transfer.
- Context: Decommissioning in Chapter 14.
- Key Considerations: Sunset plans; example: Archiving models.
- Relevance to AIGP Exam: Lifecycle end.

76. Maturity Assessment

- Definition: Evaluation of an organization's AI governance maturity using models like CMMI.
- Context: Maturity in Chapter 15.
- Key Considerations: Levels 1-5; example: From ad-hoc to optimized.
- Relevance to AIGP Exam: Improvement frameworks.

77. Board-Level Reporting

- Definition: High-level summaries of AI risks, performance, and compliance for executive oversight.
- Context: Reporting in Chapter 15.
- Key Considerations: Dashboards; example: Quarterly risk attests.
- Relevance to AIGP Exam: Governance escalation.

78. Independent Assurance

- Definition: External audits verifying AI governance effectiveness and compliance.
- Context: Assurance in Chapter 15.
- Key Considerations: SOC reports; example: Third-party bias audits.
- Relevance to AIGP Exam: Audit practices.

79. Issue Management

- Definition: Tracking and resolving AI-related problems through ticketing and prioritization.
- Context: Management in Chapter 15.
- Key Considerations: JIRA-like tools; example: Bug in model output.
- Relevance to AIGP Exam: Post-market handling.

80. Periodic Reviews

- Definition: Scheduled reevaluations of deployed AI for ongoing relevance and compliance.
- Context: Reviews in Chapter 13.
- Key Considerations: Annual; example: Updating for new laws.
- Relevance to AIGP Exam: Continuous monitoring.